
Validation (not just Verification) of Deep Space Missions1

Riley M. Duren

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099

818-354-5753
Riley.M.Duren@jpl.nasa.gov

1 1 0-7803-8155-6/04/$17.00 © 2006 IEEE

Abstract – Verification & Validation (V&V) is a widely
recognized and critical systems engineering function.
However, the often used definition “Verification proves
the design is right; validation proves it is the right design”
is rather vague. And while Verification is a reasonably
well standardized systems engineering process, Validation
is a far more abstract concept and the rigor and scope
applied to it varies widely between organizations and
individuals. This is reflected in the findings in recent
Mishap Reports for several NASA missions, in which
shortfalls in Validation (not just Verification) were cited
as root- or contributing-factors in catastrophic mission
loss. Furthermore, although there is strong agreement in
the community that Test is the preferred method for
V&V, many people equate “V&V” with “Test”, such that
Analysis and Modeling aren’t given comparable attention.
Another strong motivator is a realization that the rapid
growth in complexity of deep-space missions (particularly
Planetary Landers and Space Observatories given their
inherent unknowns) is placing greater demands on
systems engineers to “get it right” with Validation.

TABLE OF CONTENTS

1 MOTIVATIONS
2. SOME DIFFICULT LESSONS
3. CONTEXT & TERMINOLOGY
4. REQUIREMENTS VALIDATION
5. MODEL VALIDATION
6. SYSTEM VALIDATION
7. THE ROLES OF FAULT TREES
8. SUMMARY
9. ACKNOWLEDGEMENTS
10. REFERENCES

1. MOTIVATIONS

Increasing complexity of the missions being launched
represents an important driver on the rigor employed in
the Systems Engineering disciplines of Validation &
Verification (V&V). The upcoming suite of deep-space
missions requires dramatic new technologies in many
cases. In the space-astronomy arena, missions are driving
the state of the art in many areas: Kepler’s few parts-per-

million photometry, the Space Interferometry Mission
(SIM)’s few micro-arcsecond astrometry, the Laser
Interferometric Space Antenna (LISA)’s fempto-G
acceleration sensing, and the Terrestrial Planet Finder
(TPF)’s ultra-high contrast (10-10) imaging needs are all
setting new targets for performance. Getting new
technologies such as pico-meter metrology, sub-angstrom
optical wavefront control, and separated-spacecraft,
cryogenic nulling interferometry to work on Earth is
difficult enough. The Validation challenges associated
with converting these to reliable, space-borne systems are
formidable.

Likewise, as the scope of NASA’s Solar System
Exploration Program expands, future missions to Mars
and the outer planets drive the need for highly
autonomous spacecraft remote-agents, real-time hazard
sensing and avoidance in planetary landers, advanced
propulsion and energy systems, and the ability to operate
in extremely high radiation environments. Many of the
above capabilities are cost-prohibitive or impractical to
test in an end-to-end fashion prior to launch, thus placing
an increased burden on modeling and simulation as part
of a robust Validation program. There is also a caution
here: projects faced with daunting technological
challenges often succumb to tunnel vision and focus on
“invention” while neglecting the more mundane aspects
of the system, such as the spacecraft bus. Flight in deep-
space is still far from routine. Projects must continue to
apply significant attention to basic health and safety
issues, such as fault tolerance and fault protection design
and validation. [Note: while this paper focuses on Deep-
Space missions, these concepts should be applicable to
other types of space missions and complex systems in
general].

Another motivation (and the central thesis here) is the
specific role of Validation as distinct from Verification.
Some observations follow. Verification is a well-
established SE process. However, in the author’s
experience, Validation is a fuzzy, organic, poorly-
understood concept (or at the very least, “your mileage
may vary” widely between projects and organizations).
Another observation: test is the preferred method for
Validation & Verification. As a result, many system

engineers equate V&V with Test – to the extent that
Modeling & Analysis aren’t given comparable attention.
For example, the concept of Test As You Fly (TAYF) is
broadly recognized in the aerospace community.
However, we have no global recognition of a similar
concept for Model As You Fly (MAYF). With growing
mission complexity the need to identify and validate
mission-critical models is becoming increasingly
important. And a final motivating observation about
Validation – we must learn to recognize that no Model or
Test is perfect – hence the system engineer must
rigorously establish Model Uncertainty Factors (MUFs)
and Test Uncertainty Factors (TUFs).

2. SOME DIFFICULT LESSONS

Recent attempts to implement missions with the “faster,
better, cheaper” (FBC) approach have suffered from
mixed results. On the one hand, the Mars Pathfinder,
Lunar Prospector, Near Earth Asteroid Rendezvous
(NEAR), Deep Space 1 (DS1), and Deep Impact missions
were successfully implemented in the FBC mode.
However, those successes have been tempered by
catastrophic failures of the Mars Climate Orbiter (MCO),
Mars Polar Lander (MPL), Wide-field Infrared Explorer
(WIRE), and Comet Nucleus Tour (CONTOUR) missions
and Genesis hard-landing. This mixed track record
encourages continued refinement of our project
implementation practices to emphasize “success first”,
and in particular, the validation techniques needed to
ensure system robustness critical on missions with
relatively small teams in which every “link” in the risk-

avoidance chain must be protected. One should also
remember the lessons of the Hubble Space Telescope
(HST), Mars Observer (MO), and Columbia, which
demonstrated that greater resources do not always
correlate to reduced risk. Lessons-learned reports for
such missions repeatedly highlight the paramount
importance of a thorough end-to-end V&V program when
trying to balance risk and cost. Validation techniques,
which are often less consistently applied than Verification
activities, hence result in some of the major findings in
various mishap reports, as shown in Table 1.

3. CONTEXT & TERMINOLOGY

While Independent Validation & Verification (IV&V) of
software has received considerable attention recently,
standards for the broader mission-level V&V activity are
rather fuzzy (despite attempts by ISO and other
organizations), other than the mundane aspects of
verification. Likewise, the scale of mission-level V&V
efforts and basic approach varies widely from project-to-
project. In fact, there appears to be a cultural aspect of
how validation is treated in various organizations.
Namely, “great system houses” are often adept at using
validation to catch problems in the design phase whereas
“great integration houses” have demonstrated an ability to
find creative solutions for horrendous problems that arise
late in the implementation phase[5]. Missions have been
successfully implemented by both cultures but the latter
typically suffers from increased risk and higher costs (it’s
cheaper to correct problems earlier).

Mission/year Mishap Validation-related Contributing Factors
Genesis/2004

G-switch installed backward
parachute not deployed hard
landing

“no system-level test” (of G-switch)

Columbia/2003

debris damaged thermal tiles loss
of crew and vehicle

 “current tools, including the Crater model,
are inadequate …”
“flight configuration was validated using
extrapolated test data … rather than direct
testing” [1]

Comet Nucleus Tour
(CONTOUR)/2002

overheating of s/c by solid rocket
motor plume vehicle lost

 “Project reliance on analysis by
similarity”[2]

Wide-field InfraRed Explorer
(WIRE)/1999

electronics startup transient early
cover jettison cryogen boil-off
science mission lost

 “failure to correctly identify the source of
the signal which caused the Electro
Explosive Device (EED) Simulator to
"latch" upon Pyro Box power-up during
spacecraft integration testing.”[3]

Mars Polar Lander
(MPL)/1998

software flaw descent engine shut-
off too soon vehicle lost

 “employed analysis as a substitute for test
in the verification and validation of total
system performance...tests employed to
develop or validate the constituent models
were not of an adequate fidelity” [4]

Table 1 – Excerpts from recent NASA Mishap Reports

The following definitions are provided to illustrate the
subtle but important distinctions between different aspects
of a V&V program. The commonly-used phrase
“Verification proves the design is right; validation proves
it is the right design” is correct but not very specific[6].
The author has used a combination of sources including
the NASA Systems Engineering Handbook, ISO 9000
Handbook, and personal experience to refine the common
definitions as follows[7]. Verification is proof of
compliance of the as-delivered system with specific
requirements (i.e., “does what we built meet the
requirements we wrote?”). While proving compliance
with top-level performance requirements can sometimes
be a challenging task, the basic concepts behind
verification are fairly straightforward and universally
recognized, such as the use of verification matrices.
Validation is a more nebulous concept and can be broken
into three sub-definitions: requirements validation, model
validation, and system validation. Requirements
Validation is proof that the requirements (and hence the
system design) should satisfy the customer’s Need or
purpose before the system is actually built. Model
Validation is proof that the models and simulations to be
used for requirements and system validation are correct.
System Validation is proof that the as-delivered system
(all project elements operating end-to-end in the expected
flight environment with reasonable stressing conditions)
will meet the driving Need (i.e., “does what we built meet
the objectives?”). It is important to recognize
these distinctions between Verification and Validation.

The structure of a generic V&V program is shown in
Figure 1. The driving Need is used to set the initial
requirements and is frequently referred back to as part of
the validation activity. Initial model validation is done to
ensure the models/simulation can be used safely to
support requirements validation. In addition to
performance analysis/modeling/ simulation, requirements
validation includes risk analysis such as Fault Tree
Analyses and Probabilistic Risk Analyses to ensure the
design will be robust against failures or off-nominal
situations. This will be discussed further in upcoming
sections. V&V requirements and a set of tracking
matrices are used to cover requirements validation, model
validation, verification, and system validation.

System-level V&V, including roll-up from lower-level
V&V, consist of testing and calibration (characterization)
of the as-built system, analysis, modeling, and simulation
of un-testable aspects, and inspection for others. The
output of the V&V activity includes updates to the V&V
matrices and test/calibration data for updating the system
models and simulations (for potential future use in flight).
When the V&V matrices are complete, the system can
finally be considered validated (should satisfy the Need).
Of course, a system isn’t truly 100% validated until the
mission is successfully operational but every project must
strive to achieve a reasonable confidence level before
launch. The definition of reasonable varies from project to
project although most strive for > 90% confidence at
launch.

Figure 1 – Generic V&V Program Structure

Requirements
synthesis

Requirements
Validation

Model
Validation

Prototype
Testing

Independent
analysis

Risk Analysis
(FTA, PRA, etc)

Verification
& System
Validation

Testing,
Demonstration,
Characterization

Performance
Assessment &

Sensitivity Analysis

Initial Models/
Simulations

Completed
V&V Matrices

V&V
Matrices

Inspection &
Similarity

Draft
Requirements

Verified
& Validated

System

Validated
Requirements

Analysis/
Modeling/
Simulation

Need*

Final Models/
Simulations

Model
evolution Test/Charact. data

*Project Science
Objectives

ongoing checks against the Need

V&V story-
board & model

needs assessment

Project Systems are (at least) three-dimensional in nature
as illustrated in Figure 2. Therefore, the V&V programs
applied to them (and corresponding thought processes)
must also be multi-dimensional. The key concepts behind
this figure are as follows. First, to understand Validation,
the system engineer must fully grasp the context in which

the Project System “lives”. For most NASA missions, the
goal is to obtain new Scientific Knowledge about some
physical Phenomenon Under Study. The Project System
is that collection of “stuff” (hardware, software, people,
processes, and facilities) that is created to operate in some
environment(s) and provide the necessary bridge between
the Phenomenon and Knowledge. The system engineer
must be capable of visualizing the Project System’s
“transfer function” in order to successfully validate it.
Second, because in the real-world projects exist as
complex, multi-dimensional constructs rather than simple,
single-dimensional projections, one cannot really prove
that it will work as Needed if Validation is only
performed in isolated dimensions. Before moving on to
discuss each dimension, there are two complications
worth highlighting:

(1) The dimensions are not entirely orthogonal so we
must cognizant of where significant cross-coupling exists.

(2) Accurately perceiving the 3D-picture by gestalt is
very difficult – instead, this requires multiple “looks”

from different perspectives.

Figure 2 – Project System Context & Multi-Dimensional Nature

Width
(End-to-End)

(e.g., End-to-End Information System)

Depth
(Top-to-Bottom)

(e.g, Error Budgets)

Time
(Mission Phase)

(e.g., Timeline)

I
N

S
A

VT
O

P
ES

T
R

U
M

E
N

T

I
O

N
I

C
S

E
L

E
C

O
M

D
S

N

R
A

T
I

O
N

S

C
I

E
N

C
E

Project System

Segment 1 Segment 2

Element 1 Element 2

S/S-A

S/S-B

S/S-C

S/S-A

S/S-B

S/S-C

Element 1 Element 2

S/S-A

S/S-B

S/S-C

S/S-A

S/S-B

S/S-C

Project System

Segment 1 Segment 2

Element 1 Element 2

S/S-A

S/S-B

S/S-C

S/S-A

S/S-B

S/S-C

Element 1 Element 2

S/S-A

S/S-B

S/S-C

S/S-A

S/S-B

S/S-C

Launch

Cruise
EDL

LOCAL ENVIRONMENT(S)

SCIENTIFIC
KNOWLEDGE

PHENOMENON
UNDER STUDY

There is an end-to-end or front-to-back aspect of any
mission that spans its entire functional and performance
space, which can be thought of dimensionally as width.
The End-to-End Information System (EEIS) of a deep
space mission is a good example of project width. The
EEIS includes the acquisition of data (observables) from
science instruments, through formatting and downlink by
spacecraft avionics (command & data handling
subsystem) and telecommunication subsystem, delivery
via the Deep Space Network (DSN), and processing by
the Ground Data System and subsequent Science
Analysis. The EEIS also includes the return path of
mission planning and uplink commanding.

The second dimension of a project is the top-to-bottom
aspect or depth. This is the realm of the performance
error-budget and functional decomposition. The risks
inherent with working in this dimension are described in
more detail in the upcoming section on Requirements
Validation. The hierarchical structure of the project in the
depth dimension is also illustrated by the familiar systems
engineering “V-model” (Figure 3) which shows the
process by which requirements are sub-allocated and
validated on the downstroke and then the design and as-
built system are verified and validated on the upstroke[5].
Whereas verification is typically performed at all levels,
validation in its most rigorous and comprehensive form
occurs at the system level. However, in a well-executed

project, some validation is performed at all levels. For
example, a designer of an electronic board will typically
perform a worst-case analysis to assess the design
robustness to stressing conditions. Such lower-level
validation activities are flowed upwards to the next level,
playing a part in overall system validation.

The third dimension of a project is time. In this context,
time has (at least) two distinct implications. First, when
planning validation activities one must carefully consider
the functional evolution of the mission over time. For
example, a Mars lander has distinct mission-critical
functionality unique to each mission-phase: Launch,
Cruise, and Entry, Descent, & Landing (EDL). This
phase-dependent functionality (particularly time-critical
events and phase transitions) must be carefully considered
by the systems engineer when designing validation
activities (i.e., relying on a functional decomposition or
depth view alone is not sufficient).

Secondly, the time dimension is important in that the
V&V program must consider the entire project life-
ccycle, from formulation, definition, development, test,
operations, and data reduction (phases A through F in
NASA parlance) even if the V&V effort itself is carried
out primarily during the last year or two before launch.
Figure 4 illustrates how the V&V program evolves over
the project life cycle. Note: while uplink command
validation and software-patch validation are important
during operations, they are considered peripheral to this
discussion which is focused primarily on ensuring
mission-readiness.

The important point here is that the project must go

through the exercise of drafting a V&V Plan early in
definition phase and explore the above topics.
Considering and agreeing on the overall risk posture and
corresponding scope of the V&V program is essential to
achieving the proper balance.

Component
V&V

Subsystem
V&V

Element
V&V

System
V&V

Component
Requirements

Subsystem
Requirements

Element
Requirements

System
Requirements

Design

NEED (Objectives) PRODUCT

V
&

V
 R

eq
ui

re
m

en
ts

Requirements
flow-down &
requirements

validation

As-built
verification &

validation
flow-up

Figure 3 – Systems Engineering V-Model

4. REQUIREMENTS VALIDATION

In proving the system will meet the ultimate Need,
validation must address several aspects of the
requirements and system design: correctness,
completeness, achievability, verifiability, and robustness.
Clearly, the requirements governing the system design
must be correct and complete in order to satisfy the Need.
The requirements must likewise result in a design that is
achievable given the allocated project resources. To
avoid unreasonable risk, requirements must be such that
they can be verified once the system is built. Finally, the
requirements should result in a system that is both robust
to variations in performance beyond the nominal

operating range as well as robust in the presence of
reasonable fault conditions. These points were driven
home with lessons-learned in the wake of the Mars
Climate Orbiter (MCO) and Mars Polar Lander (MPL)
failures, namely: verification such as a Test Like You Fly
philosophy can never relieve engineers of their top
priority – to get it right the first time[8]. Specific
recommendations in this area included:

a) Avoid stating requirements in a negative
sense (“shall not do X”) because they are
notoriously difficult to verify

b) Ensure that lower-level (e.g., subsystem)
requirements are covered properly by a
parent requirement at the system level –
since the latter are generally subject to more
rigorous, formal V&V and thus more likely
to catch problems during later verification.

c) Avoid compound requirements (e.g., “shall
do X and Y”) as they are often difficult to
validate together.

The system engineer should maintain a mental check-list
of the following considerations when validating
requirements:

• System complexity often defies the “black-box”

model
– Tight coupling/interdependencies
– Pourous/amorphous interfaces 6. Early hardware/software testing

• Systems are multi-dimensional – “hyper cube” model

– Interdependencies often cross dimensional
boundaries

– Not always orthogonal
• Requirements exist in one of two basic camps

– What the system must be
• Performance

– How the system should behave
• Functionality/Operability

Given that Validation is a three dimensional problem it is
important to study the driving requirements from multiple
vantage points to avoid missing something critical. The
following tools and techniques are available for
validation, each offering a unique and important
viewpoint:

1. Functional flow diagrams
2. Performance Error Budgets
3. State Analysis
4. Performance Sensitivity Analyses/Models

a. Merit Functions
b. Monte Carlo Simulations

5. Risk Analyses
a. Fault Tree Analysis
b. Probabilistic Risk Analysis
c. Failure Modes, Effects, and

Criticality Analysis
d. Worst-Case Analysis

Phase: B (definition) C/D (design & build) E (operations)

SRR PDR CDR Test Launch

Model
Validation

Requirements
Validation

Verification

System Validation

Model & Requirements validation efforts
and uncertainty decrease as project matures

Verification efforts increase
as elements are produced

System validation is most active
during integrated system testing

*note: while the bulk of the V&V Program exists in Phase C/D for purposes of
certification of flight readiness, other Validation efforts are performed during operations

What most
people think of
as “V&V”

Figure 4 – V&V across the Project Life-cycle

Functional Flow Diagrams
End-to-end system functionality (the “width” dimension
of the V&V program) can be studied with functional flow
diagrams. The exercise of understanding the logical flow
between project elements from front-end to back-end
offers insight into the adequacy of interface requirements
and overall system utility. In addition to addressing
hardware/software aspects, functional flow diagrams are
also important for studying operational processes and the
requirements placed on them, particularly for human-
machine interactions and fault response.

Performance Error Budgets
Likewise, comprehensive error budgets are useful in
understanding the top-to-bottom flow of performance
requirements and capabilities (addressing the depth
dimension of V&V). A simplified example of an error
budget from the Kepler planet-detection mission is shown
in Figure 5. The driving Need/Science Objective and
resulting top-level system requirements are highlighted.
Error budgets also represent an example of the temporal
aspect of validation. Early in the project, engineers use
error budgets in a top-down mode to sub-allocate
performance requirements to the different elements. Then,
as the project progresses and design maturity improves,
the error budgets are used in a bottom-up mode to predict
the expected performance. Improving the fidelity of the
error budgets in this fashion is one goal of the model
validation effort.

A potential pitfall to watch for in error budgets is the
appropriate treatment of systematic errors versus
uncorrelated, random noise. This topic is beyond the
scope of this paper, but the performance analyst must be
scrupulous in understanding and accounting for the
effects of systematic errors and the calibration and error
rejection techniques employed in data-reduction.
Carefully accounting for small errors and residuals are
necessary to avoid being either over-conservative or too
optimistic in estimating overall system performance.
System engineers should demand that performance error
budgets explicitly depict all potential error sources (even

if the magnitude of the error contribution is negligible, the
exercise must be completed).

Figure 6 – Science Merit Function (Sensitivity Analysis)

Required
Precision

Science
goodness

Instrument
Precision

Baseline
Science

Need

Science Floor

Region of Robust
Operation

Region of Nominal
Operation

Region of
Non-graceful
Degradation

X

Figure 5 – Performance Error Budget for Kepler

Detection confidence
level (total SNR)

of transits seen per
target (Nyears rqmt)

Transit
SNR rqmt

Combined Differential
Photometric Precision rqmt

Raw
Precision rqmt

Ground error
reduction rqmt

Instrument noise
rqmt

Spacecraft
Jitter rqmt

Source variation
rqmt (limiting
assumption)

Science Objective (Need):
Statistical frequency of terrestrial planets
in the habitable zones of solar-type stars

of suitable stars
observed (Nstars rqmt)

Mission
Life rqmt

Planet size
detection

limit

Field of
View rqmt

Data
Completeness rqmt

Robustness and Graceful Degradation
Projects sometimes make the mistake of unintentionally
creating requirements and designs that result in operation
at or near “cliffs”. While a system may be designed to
meet performance specifications within a fairly tight set
of tolerances around a required central value, it may fail
precipitously in the event of relatively minor excursions
from the region of nominal operation. The concept of
graceful degradation is key to successfully implementing
deep-space systems in the faster, better, cheaper
environment. Properly executed validation programs
enable graceful degradation by using performance
sensitivity analyses and design risk analyses to identify
cliffs and soft-spots, thus providing the project sufficient
insight to guide risk versus cost (mitigating action) trades.

Performance Sensitivity Analyses
Merit Functions and Monte Carlo simulations are two
useful tools for assessing the robustness of a system in
terms of its overall performance. Monte Carlo
simulations are well-described in the literature and can be
very helpful for perturbing system parameters such as

spacecraft pointing jitter in stressing cases to assess the
impact on top-level performance[6].5

Merit Functions are models that provide the system
engineer and the customer (such as a Principal
Investigator or PI) with a method of studying the
sensitivity of the mission Need to changes in key mission
parameters. Another way of thinking about this is: what is
the science sensitivity to the mission parameters?

As an example, consider the Kepler mission. The PI has
identified a Need to determine the frequency of terrestrial
planets in the habitable zones of solar-type stars. The
quality of the Science produced (i.e., the number of
appropriate planets found per star observed) is some
function of a few key mission parameters: instrument
precision, detection signal-to-noise ratio (SNR), # of stars
observed, # of years observed. To determine the
sensitivity of the Kepler “science goodness” we can
establish some Merit Functions that allow us to study
crucial “partial derivatives”:

identified a Need to determine the frequency of terrestrial
planets in the habitable zones of solar-type stars. The
quality of the Science produced (i.e., the number of
appropriate planets found per star observed) is some
function of a few key mission parameters: instrument
precision, detection signal-to-noise ratio (SNR), # of stars
observed, # of years observed. To determine the
sensitivity of the Kepler “science goodness” we can
establish some Merit Functions that allow us to study
crucial “partial derivatives”:

Again, the goal is to deliver a system that is robust to
variations in the key mission parameters by remaining in
the flat portion of the performance curve. Figure 6
provides another, hypothetical example of a Merit
Function in which the sensitivity of the science goodness
with respect to instrument precision is plotted. The X
marks the intersection of the Baseline Science Need with
the Required Precision (the former should have driven
the latter during synthesis). The small box around the X
represents the Region of Nominal Operation. The Region
of Robust Operation is defined by a combination of the
Science Floor (minimum mission success criteria) and the
edge of the “cliff” which marks the boundary of the
Region of Non-Graceful Degradation. The mission should
strive to work properly within the Region of Robust
Operation.

Again, the goal is to deliver a system that is robust to
variations in the key mission parameters by remaining in
the flat portion of the performance curve. Figure 6
provides another, hypothetical example of a Merit
Function in which the sensitivity of the science goodness
with respect to instrument precision is plotted. The X
marks the intersection of the Baseline Science Need with
the Required Precision (the former should have driven
the latter during synthesis). The small box around the X
represents the Region of Nominal Operation. The Region
of Robust Operation is defined by a combination of the
Science Floor (minimum mission success criteria) and the
edge of the “cliff” which marks the boundary of the
Region of Non-Graceful Degradation. The mission should
strive to work properly within the Region of Robust
Operation.

Note: science floor is the most important driver when
setting the Region of Robust Operation. In this idealized
example, the design has been cost-optimized such that the
science floor intersects the knee in the curve (it is of
course acceptable and preferable to have some distance
between the two).

Note: science floor is the most important driver when
setting the Region of Robust Operation. In this idealized
example, the design has been cost-optimized such that the
science floor intersects the knee in the curve (it is of
course acceptable and preferable to have some distance
between the two).

Early Hardware/Software TestingEarly Hardware/Software Testing
When performance sensitivity analyses and design risk
analyses identify a potential cliff or soft spot, it is often
prudent to perform early tests using engineering model
hardware and/or software testbeds to confirm such
predictions and/or assess mitigating designs. Again, such
tests are only as good as their design – a well thought-out
V&V plan can guide what and how to test during a

Figure 7 – V&V storyboard for SIM wide-angle astrometric accuracy

3baseline test on
subscale article

Pico-modeling for
calibration

processing w/
prototype
algorithms

Verifies 3BL
performance in lab

environment

Single baseline
test on flight
article (x3)

Pico-modeling for
calibration and

single to 3 baseline
propagation

processing w/
flight algorithms

Verifies 3BL
performance in flight-

like environ

M

T T

T M M A

A

Single-measurement
accuracy (10 µas)

I&T Integrated Model

Science Data Center

V&V Engineer

Integrated Model Global simulationMetrology
Testbed

T = test
A = Analysis
M = modeling/simulation

V&V Engineer

Astrometric
grid closureM

Global simulation

processing w/flight
algorithms

processing w/flight
algorithms

T

5 year
accuracy (4 uas)

5 year accuracy
w/o baseline errors

(3.8 µas)

long-term
baseline knowledge

errorsM

Global simulation

Verifies 5year
mission accuracy

A

V&V EngineerScience Data Center

Science Data
Center

T

project’s definition phase.

5. MODEL VALIDATION

Models (including simulations) play important roles both
in requirements validation as well as subsequent
verification and system validation. The uses of models in
requirements validation were described above. For the
later phases of V&V, models are often used to “bridge the
gaps” in the system verification and validation effort that
cannot be directly tested. Some models (or certain
aspects of them) should be considered mission-critical if
errors in such areas could mask problems leading to
failures in the operations phase of the project.

In a cost-constrained project, the following minimum
approach should be used to identify and validate mission-
critical models and simulations:

1) In early drafts of the Project V&V Plan, identify
the mission-critical models (create verification
and system validation “storyboards” and show
where and how models and simulations fit into
the overall scheme relative to testing).

2) Establish requirements on mission-critical model
functional capabilities and accuracy

3) Validate the mission-critical models in terms of
those driving requirements

4) Maintain configuration control of the validated
models (treat as mission- critical software)

An example of the V&V storyboard effort is shown in
Figure 7. This addresses the plan for verifying the SIM
astrometric performance requirement. Due to practical
constraints, this effort involves a mixture of tests and
modeling. The critical roles played by some models are
circled, such as those needed to propagate the
performance of each interferometer (single-baseline) to
integrated system performance (3 baseline) or the
incorporation of astrometric grid closure in assessing the
ultimate 5 year mission accuracy.

Veteran analysts will admit that model validation is not
straightforward in a quantitative, statistical sense and that
much emphasis will likely be placed on fairly subjective,
qualitative techniques[9]. Using a mix of model validation
techniques in complementary fashion can reduce the risk
of errors. Such techniques include[10]:

1) Face validation: inspection of model results by
experts on the system being studied to confirm
the model seems reasonable & provides the
required functional capabilities

2) Peer review: independent review of the
theoretical underpinnings and detailed
examination of model internal components

3) Functional decomposition and test: also called
piece-wise validation, inject test data into

individual code-modules and compare actual
output with predicted output

4) Comparison or empirical validation: compare
performance of the model against performance
with the physical system being modeled (or a
similar system)

Comparison or empirical validation is a preferred
technique and ideally provides quantitative estimates of
model credibility or accuracy via cost functions such as
Theil’s Inequality Coefficient (TIC) and multivariate
statistics[11,12].

In practice there are several limitations to this concept,
chief among them: the final form of the system being
modeled does not yet exist in the early phases of the
project when the model is being used for requirements
validation. This situation can often be remedied later in
the project when the real system is undergoing test and
can be used to support model evolution, although care
must be taken to isolate noise induced by test artifacts
from inherent system noise when making comparisons. In
the early phase of the project, such model comparisons
with real systems can sometimes be accomplished by
modifying the model’s capabilities to describe a similar
existing system (thus validation by similarity).

A final word on Model Validation: a key to achieving
model fidelity is to apply the proper rigor in designing the
model. The aerospace community has embraced the
concept of Test As You Fly (TAYF) on the verification
front. We could likewise benefit from a analogous
concept of Model As You Fly (MAYF), some basic
guidelines for which are offered here:

1) Project should follow the “model as you fly; fly as you
model” philosophy throughout its V&V activities. “Model
as you fly” (MAYF) means:

• a. Mathematical models and simulations of
physical processes and error sources
(astrophysical and instrumental), hardware, and
operational algorithms shall replicate to the
maximum extent possible, the “real thing” (e.g.,
what the project system, environment, and
algorithms will do in flight).

• b. These models and simulations should preserve
spatial and temporal information and the same
“causality” expected in flight (including order of
occurrence)

2) MAYF is applicable to all “critical” models &
simulations used to support an Analysis which serves as a
primary Verification Method.

3) Exemptions to the MAYF philosophy, including
characterization of differences between
Modeled/Simulated and Flight conditions, should be
documented in the MAYF Exemptions List and reported
at Mission Readiness Review.

6. SYSTEM VALIDATION

Even if requirements and model validation result in a
design that should meet the ultimate Need, and
Verification proves that all formal requirements have
been met, System Validation is necessary to prove the as-
built system in fact does satisfy the ultimate Need.

System Validation goes beyond Verification – the
primary intent is to assess robustness. When planning
System Validation activities, the system engineer should
be encouraged to explicitly AVOID looking at the
requirement documents – instead think about “what needs
to happen”. While this may sound heretical, it’s important
to recognize that Validation is an organic rather than
algorithm process and to pursue it accordingly.

Some primary System Validation methods include:

1. End-to-End Info System (EEIS) Testing
• Addresses overall COMPATIBILITY of the

Project information systems (command,
data, timing, etc)

2. Mission Scenario Tests (MSTs)

• Ensures flight h/w and all s/w can execute
the mission under flight-like conditions
(nominal & contingency) – but not on the
flight time-line

3. Operations Readiness Tests (ORTs)

• Demonstrates that all elements of the ground
segment (software, hardware, people,
procedures, & facilities) work together to
accomplish the mission plan – i.e., using real
timelines

• Include Flight Segment for at least 1 or 2 of
these and exercise key nominal and
contingency operations

4. Stress-Testing (or Risk-Reduction Testing)
• Demonstrates robustness to off-nominal

conditions

5. Analysis & Simulation
• Everything not covered by the above

To organize the System Validation program and ensure
proper coverage, the System Engineer should develop and
maintain a Validation Matrix which describes for each
Key Functional Capability (usually by Mission Phase),
how it is Validated – i.e., using which of the above
methods, what “venue” (flight vehicle, testbed, simulator,
etc). Note that this is similar to but independent of the
traditional Verification Matrices – however, it is certainly

appropriate to compare the two for purposes of
eliminating unnecessary duplication.

A related concept is that of the incompressible test list
which identifies the minimum set of tests that must be
performed prior to certain project milestones such as
launch, regardless of schedule and budget pressures.
Once established, any changes to this “line in the sand”
list must be approved by an unbiased, independent review
authority (usually external to the project).

As mentioned previously, validation does not follow the
same well-established policies as verification. When
starting to put together a system validation matrix, the
engineer may struggle with “how to start?”. However, the
same techniques discussed above in the section on
Requirements Validation can be applied in generating
such a matrix, which will define what validation tests are
performed.

Validation should include Operational Readiness Tests
(ORTs) that assess how the end-to-end system will really
perform when all the flight and ground hardware,
software, people, and operational procedures come
together. Cross-system compatibility tests or
“scrimmages” to validate things such as flight-ground
interfaces are useful pre-cursors and complementary
activities to ORTs. Another key component of system
validation is stress testing and simulation, in which
system robustness to variations in performance and fault
conditions are assessed. The Region of Robust Operation
in Figure 6 depicts the space over which system
performance should be tested. Likewise, the results from
system Fault Tree Analysis should guide the definition of
Mission Scenario Tests, which include fault injection.

The importance of such stress testing and simulation was
cited in the WIRE failure report: “Testing only for correct
functional behavior should be augmented with significant
effort in testing for anomalous behavior”[3]. Likewise
from the MPL mishap report: “The flight software was
not subjected to complete fault-injection testing. System
software testing must include stress testing and fault
injection in a suitable simulation environment to
determine the limits of capability and search for hidden
flaws”[4]. Some projects rightly claim they cannot do full
fault-injection testing with the flight system without
incurring excessive risks or costs. However, the solution
is to invest in software testbeds to do this. Again, an early
V&V Plan can identify the need for such testing and the
required testbed capabilities.

Stress-testing validates the design by demonstrating
system robustness by exercising over a broad parameter
space – including beyond nominal. Some guildelines for
planning stress-tests include:

1. Stress testing must be performed to determine
capability boundaries and demonstrate

robustness of designs, in order to assure health/
safety and provide confidence in project
validation.

2. Stress testing must consider single faults that
cause multiple-fault symptoms, occurrence of
subsequent faults in an already faulted state, etc
(going beyond the traditional Fault Protection
Verification program).

3. Stress testing will be performed on the integrated
Flight Segment whenever it can be done safely
and within resources. Otherwise it should be
done in the System Test Bed.

Note that stressing in this context does NOT imply
physically stressing the flight h/w. Planning such things
also requires prioritization (balancing risk vs project
resources) to determine which tests to run. Stress-test
planning can benefit from a two-pronged approach.

• ORGANIC: Use brain-storming sessions
with designers to identify what-ifs

• ALGORITHMIC: Use results of Analyses

to identify “soft” spots
 Fault-Tree Analysis
 State Analysis
 Performance Sensitivity Analysis

7. THE ROLE OF FAULT-TREES

The need for system-level risk analysis as part of the
project validation program was highlighted in the findings
of the 1998 MPL Mishap Investigation Board: “A fault-
tree analysis (FTA) was conducted by the project before
launch for specific mechanisms and deployment systems
where redundancy was not practical. No system-level§
FTA was formally conducted or documented…The
greatest value of system-level FTA is to identify, from a
top-down perspective, critical areas where redundancy
(physical or functional) or additional fault protection is
warranted”[4].

 Likewise, the MCO mishap investigation noted that a key
contributor to that mission loss was: “Absence of a
process, such as fault tree analysis, for determining ‘what
could go wrong’ during the mission”[13].

Fault Tree Analysis (FTA) is a crucial tool for assessing
the robustness of a system to failure modes. An FTA is
simply an exercise in which the system engineer considers
“what has to happen for the mission to succeed” (or
conversely, fail) and then de-composes this in a logical
fashion. This is very useful in later phases of system
validation, particularly test planning.

It is fairly standard practice for projects to employ some
form of FTA to assess reliability of individual mechanical

§ Emphasis mine.

actuators. Unfortunately, the use of FTA to study overall
system-level robustness is used less consistently. Recent
projects such as Mars Odyssey have benefited from the
MCO/MPL lessons-learned and implemented rigorous
FTA and Risk Assessment programs, guidelines for which
have been well documented in the literature[14].

In addition to system-level FTA, lower-level design risk
analyses are necessary to ensure integrated system
robustness. A companion to FTA is the Failure Modes,
Effects, and Criticality Analysis (FMECA). A cognizant
engineer for an assembly is responsible for insuring by
analysis that failures in that assembly cannot propagate to
other assemblies (e.g., a short-circuit condition). FMECA
therefore tends to be focused on the interfaces between
project elements. Additionally, Functional FMECAs can
be performed to identify failure modes associated with
key functions (as opposed to a device- or interface-centric
view). FMECAs, when combined properly with system
FTA, help ensure the objective of fault containment is
met.

It should be stressed that Risk Analysis in general and
FTA in particular are activities that span the project life-
cycle. They should begin in Definition phase, become
particularly active around the time of Critical Design
Review, and continue into the Operations phase and
planning for operations (in terms of contingency
planning). This “healthy questioning of what might go
wrong” is frequently cited as a good feature of a
successful project culture[10]. However, in order for Risk
Analysis to be effective, the person responsible for
leading this effort must have sufficient time, broad
perspective, and management-supported clout to keep a
watchful eye across the project and ferret out risks before
they develop into unrecoverable problems. This person is
a key link in the project’s risk-avoidance chain and
having a “Sherlock Holmes approach and a bulldog’s
disposition to pursue strange indications while the rest of
the team is distracted” (well into operations) is vital[8].
One final point about FTA, this activity is ideally done
independently – even if it involves project personnel
involved in requirements synthesis. Taking a fresh look
from another angle serves as a form of independent
requirements validation.

Some guidelines for Mission Fault Tree Analysis include:

• Mission-level FTA starts with a Mission Success
Tree which is inverted to form Mission Level
Fault Trees by Mission Phase

• Mission-level FTA should “come down” and
meet subsystem-level Fault Trees “coming up”

• Project Systems Engineering is responsible for
Mission-level FTA, delegated to the Fault
Protection Team who also does the subsystem
level FTA (with support of the subsystem
designers)

• Mission-level FTA assists with Stress-
testing/validation by identifying specific failure
modes

A final use of Fault Trees Analysis is identifying
soft-spots in actual test design. Particularly complex
and critical tests should have fault-trees developed to
clearly identify “where this can go wrong” and add
appropriate mitigating features.

8. SUMMARY

In conclusion system engineers should keep the following
points in mind when validating a complex system:

1. Validation is not the same as Verification
2. Validation occurs across the project life-cycle
3. Projects (& Validation efforts) are 3-dimensional
4. Requirements Validation involves 5 questions
5. Use storyboards to identify critical models
6. Model As You Fly (MAYF)
7. Performance Robustness Merit Functions
8. Functional Robustness State Analysis &

Stress-Testing
9. Recognize & Manage Uncertainty Factors for

Testing & Models
10. Identify & Correct soft spots Fault Trees

9. ACKNOWLEDGEMENTS

The author is grateful for useful discussions with
colleagues including: Arden Acord, Mark Brown, Ross
Jones, Gentry Lee, Charles Whetsel, Tom Gavin, and Bob
Rasmussen at JPL, Steve Jolly at Lockheed Martin
Astronautics, and Eric Bachtell at Ball Aerospace and
Technology Corporation. The MER Terminal Descent
fault tree was provided by Bob Mitcheltree of JPL and
NASA Langley. Kepler Principal Investigator William
Borucki of NASA’s Ames Research Center developed the
Science Merit Function described here. Mike Margulis of
Lockheed Martin Missiles & Space Systems and JPL’s
Peter Kahn provided input on the SIM astrometric
performance validation flow.

The work described here was carried out at the Jet
Propulsion Laboratory, California Institute of Technology
under contract to the National Aeronautics and Space
Administration.

10. REFERENCES
 [1] Gehman, Hal, etal, “Columbia Accident
Investigation Board report”, Vol I, URL:
http://caib.nasa.gov/news/report/volume1/chapters.ht
ml, August 2003, [cited Nov 1, 2005]
[2] Bradley, Theron, etal “CONTOUR Mishap
Investigation Board Report”, URL:

http://www.nasa.gov/pdf/52352main_contour.pdf,
May 31, 2003 [cited Nov 1, 2005].
[3]Branscome, Darrell R., “WIRE Mishap
Investigation Board Report”, URL:
http://klabs.org/richcontent/Reports/wiremishap.htm,
June 8, 1999 [cited August 3, 2003].
[4]Casani, John, “Report on the Loss of the Mars
Polar Lander and Deep Space 2 Missions”, URL:
http://spaceflight.nasa.gov/spacenews/releases/2000/
mpl/mpl_report_1.pdf, March 22, 2000 [cited August
8, 2003].
[5]Grady, Jeffrey O., System Validation &
Verification, pp. 74-75, CRC Press, 1998.
[6] Hoyle, David, ISO9000 Quality Systems
Handbook, p.234, 3rd edition, 1998.
[7]Hoban, Frank, Hoffman, Ed, “NASA Systems
Engineering Handbook”, NASA SP-610S, June 1995
[8]Euler, Edward, Jolly, Steven, Curtis, H.H., “The
Failures of the Mars Climate Orbiter and Mars Polar
Lander: A Perspective From the People Involved”,
Vol 107, Advances in the Aeronautical Sciences,
American Astronomical Society, 2001.
[9]Arthur, James D, Sargent, Robert G. , Dabney,
James B., Law, Averill M., and Morrison, John D.,
“Verification and Validation: What Impact Should
Project Size and Complexity have on Attendant V&V
Activities and Supporting Infrastructure”,
Proceedings of the IEEE: 1999 Winter Simulation
Conference, Institute of Electrical and Electronic
Engineers, edited by P.A. Farrington, pp. 148-155,
1999.
[10]Youngblood, S.M., Pace, D.K., “An overview of
model and simulation verification, validation, and
accreditation”, Johns Hopkins APL Technical Digest,
16(2): 197-206, Apr-Jun 1995.
[11]Smith, M.I., Hickman D., Murray-Smith, D.J.,
“Test, verification, and validation issues in modelling
a generic electro-optic system”, Proceedings of the
SPIE: Infrared Technology and Applications XXIV,
Vol 3436, pp. 903-914, July 1998.
[12]Balci, O., “Principles of simulation, model
validation, verification, and testing”, Transactions of
the Society for Computer Simulation International,
14(1): 3-12, March 1997.
[13]Stephenson, Arthur G.,“Report on Project
Management Within NASA by the Mars Climate
Orbiter Mishap Investigation Board”, URL:
http://www.space.com/media/mco_report.pdf, March
13, 2000 [cited August 8, 2003].
 [14]Beutelschies, Guy, “That One’s Gotta Work –
Mars Odyssey’s use of a Fault Tree Driven Risk
Assessment Process”, Proceedings of the IEEE
Aerospace Conference, 6599-2, 2001.

http://caib.nasa.gov/news/report/volume1/chapters.html
http://caib.nasa.gov/news/report/volume1/chapters.html
http://www.nasa.gov/pdf/52352main_contour.pdf
http://klabs.org/richcontent/Reports/wiremishap.htm
http://spaceflight.nasa.gov/spacenews/releases/2000/mpl/mpl_report_1.pdf
http://spaceflight.nasa.gov/spacenews/releases/2000/mpl/mpl_report_1.pdf
http://www.space.com/media/mco_report.pdf

BIOGRAPHY

Riley Duren is a Senior staff
member at the Jet Propulsion Laboratory (JPL). He is
currently the Project System Engineer for the Kepler
space observatory, scheduled for launch in 2008 and
designed to determine the frequency of extra-solar
terrestrial planets. He has held systems engineering
positions on other projects associated with exo-planet
detection, including the Starlight mission (a formation-
flying interferometer precursor to the Terrestrial Planet
Finder mission) and the Space Interferometry Mission. He
was the Chief Engineer for the Attitude and Orbit
Determination Avionics and Mission Operations Director
for the Shuttle Radar Topography Mission, which in 2000
generated a near-global map of the earth’s surface to 10
meter vertical accuracy. He has also served on the Mars
Program Systems Engineering Team and is a consultant
on metrology systems for large aerospace structures.
Before joining JPL, he was a lead Test Engineer on five
space shuttle science payloads at NASA’s Kennedy Space
Center (including tethered satellites, condensed matter
physics, astronomy, and remote sensing).

	1. MOTIVATIONS
	Mission/year
	Mishap
	Validation-related Contributing Factors
	Genesis/2004
	G-switch installed backward (parachute not deployed (hard landing
	“no system-level test” (of G-switch)
	Columbia/2003
	debris damaged thermal tiles (loss of crew and vehicle
	 “current tools, including the Crater model, are inadequate …”
	“flight configuration was validated using extrapolated test data … rather than direct testing” [1]
	Comet Nucleus Tour (CONTOUR)/2002
	overheating of s/c by solid rocket motor plume (vehicle lost
	Wide-field InfraRed Explorer (WIRE)/1999
	electronics startup transient (early cover jettison (cryogen boil-off (science mission lost
	 “failure to correctly identify the source of the signal which caused the Electro Explosive Device (EED) Simulator to "latch" upon Pyro Box power-up during spacecraft integration testing.”[3]
	Mars Polar Lander (MPL)/1998
	software flaw (descent engine shut-off too soon (vehicle lost
	 “employed analysis as a substitute for test in the verification and validation of total system performance...tests employed to develop or validate the constituent models were not of an adequate fidelity” [4]
	
	3. CONTEXT & TERMINOLOGY
	

